ALGEBRA

List 8.

Symmetric matrices, bilinear and quadratic forms. Second order curves and surfaces.

1. For the matrix

$$
A=\left(\begin{array}{ccc}
0 & 2 & 2 \\
2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right)
$$

(i) find eigenvalues and orthonormal eigenbasis;
(ii) write the associated quadratic form in the standard basis and in the eigenbasis;
(iii) determine whether the matrix is positive or negative (semi-)definite.
2. For the matrix

$$
A=\left(\begin{array}{ccc}
2 & 2 & -1 \\
2 & -1 & 2 \\
-1 & 2 & 2
\end{array}\right)
$$

(i) find eigenvalues and orthonormal eigenbasis;
(ii) write the associated quadratic form in the standard basis and in the eigenbasis;
(iii) determine whether the matrix is either positive or negative (semi-)definite.
3. For the quadratic form

$$
Q(x, y, z)=2 x^{2}+y^{2}-4 x y-4 y z,
$$

(i) write the matrix of the form and diagonalize it;
(ii) write the orthogonal matrix which transforms the quadratic form to the canonic form, and write the canonic form;
(iii) determine whether the quadratic form is either positive or negative (semi-)definite.
4. For the quadratic form

$$
Q(x, y, z)=-2 y z
$$

(i) write the matrix of the form and diagonalize it;
(ii) write the orthogonal matrix which transforms the quadratic form to the canonic form, and write the canonic form;
(iii) determine whether the quadratic form is either positive or negative (semi-)definite.
5. For the systems of vectors given below, apply the Gramm-Schmidt orthogonalization procedure to get an orthonormal basis in the subspace spanned by these vectors.
(a) $(1,2),(1,-1)$;
(b) $(2,1),(3,1)$;
(c) $(1,1,2),(1,-1,2)$;
(d) $(1,1,1),(1,2,3)$;
(e) $(1,1,2),(1,-1,2),(1,0,2)$;
(f) $(1,1,1),(1,1,-1),(-1,1,1)$.
6. For the second order curve given by the equation

$$
7 x^{2}-2 y^{2}-12 x y-10 x+6=0
$$

(i) write the canonical form and specify the type of the curve;
(ii) specify the coordinate system in which the curve has the canonical form;
(iii) draw the curve.
7. Perform the same analysis as in the above problem for the following second order curves:
(a) $34 x^{2}+41 y^{2}+24 x y+92 x+106 y-49=0$;
(b) $2 x^{2}+2 y^{2}-2 x y+10 x-2 y-13=0$;
(c) $5 x^{2}-5 y^{2}-12 x y+34 x-14 y+25=0$.
8. For the second order surface given by the equation

$$
4 x^{2}+4 y^{2}+z^{2}+8 x y+8 x z+4 y z+18 x+18 z+18=0
$$

(i) write the canonical form and specify the type of the surface;
(ii) specify the coordinate system in which the curve has the canonical form;
(iii) sketch the picture of the surface.
9. For the second order surface given by the equation

$$
x^{2}+y^{2}-2 z^{2}+8 x y+4 x z+3=0
$$

(i) write the canonical form and specify the type of the surface;
(ii) specify the coordinate system in which the curve has the canonical form;
(iii) sketch the picture of the surface.
10. For the second order surface given by the equation

$$
5 x^{2}+7 y^{2}+6 z^{2}+4 x y-4 y z-18=0
$$

(i) write the canonical form and specify the type of the surface;
(ii) specify the coordinate system in which the curve has the canonical form;
(iii) sketch the picture of the surface.

